Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Development of Effective Exhaust Gas Heat Recovery System for a Hybrid Electric Vehicle

2011-04-12
2011-01-1171
The success of improved fuel economy is the proper integration of thermal management components which are appropriately performed to reduce friction and wasted energy. The thermal management systems of vehicle are able to balance the multiple needs such as heating, cooling, or appropriate operation within specified temperature ranges of propulsion systems. Since the propulsion systems of vehicle have changed from a single energy source based on conventional internal combustion engine to hybrid system including more electrical system such as full type of hybrid electric vehicle or plug-in hybrid electric vehicles, a new transition associated with vehicle thermal management arises. More efficient thermal management systems are required to improve the fuel economy in the hybrid electric vehicles because of the driving of electric traction motor and the increase of engine off time. The decrease of engine operation time may not sustain the proper temperature ranges of engine and gearbox.
Technical Paper

A Study on the Acoustic Simulation for the Components of an Intake System

2011-05-17
2011-01-1520
The reduction of intake noise is a very important factor in controlling the interior noise levels of vehicles, particularly at low and major engine operating speeds. A vehicle intake system generally consists of air cleaner box, hose, duct, and filter element. Also, resonators and porous duct are included, being used to reduce intake noise. For more accurate estimation of the transmission loss (TL), it seems important to develop a CAE model that accurately describes this system. In this paper, simple methods, which can consider the effects of filter element and vibro-acoustic coupling, are suggested which could remarkably improve estimation accuracy of the TL. The filter element is assumed as equivalent semi-rigid porous materials characterized by the flow resistivity defined by the pressure drop, velocity, and thickness.
Technical Paper

A Study on Front End Auxiliary Drive(FEAD) System of 48V Mild Hybrid Engine

2018-04-03
2018-01-0414
48V mild hybrid engine is one of major eco-friendly technology for global CO2 reduction policy. The 48V mild hybrid engine enables to operate torque boost, recuperation and ISG status by MHSG(Mild Hybrid Starter and Generator). The FEAD(Front End Auxiliary Drive) system is a very important role to transfer MHSG power to crankshaft at the mild hybrid engine. The conventional FEAD configuration is relatively simple because it transfers power from crankshaft to auxiliary drive components in one direction. But the FEAD configuration of 48V mild hybrid engine is not simple due to bidirectional power transmission between crankshaft and MHSG. For instance, in case of torque boost mode, the tight side of auxiliary belt is entry span of MHSG. On the contrary, the tight side of auxiliary belt is exit span of MHSG at recuperation mode.
Technical Paper

Development of a Pre-Validation Mode for Cooling Module by Test and CAE

2018-04-03
2018-01-0466
In case of cooling module rotated by belt, many sources (vehicle’s vibration, belt’s tension and thrust force by rotated fan) are acting on it. Because it is not easy to analyze them individually, there were no rig test modes for pre-validation while developing a new vehicle. In this study, we correlated the strain gauges signal to belt’s tension and fan’s thrust force, and measured acceleration of a vehicle and cooling module by driving a vehicle on the several test roads. In that case of measured acceleration data, we could analyze it by using PDF and construct the representative rig test modes considering vibrational fatigue characteristics by using the FDS. These modes can be utilized while developing a new vehicle without measuring anymore. Also, we could understand each load’s characteristics. It is confirmed that the factors affecting the fatigue were not only the vehicle’s vibration but also the belt’s installation tension.
Technical Paper

Development of Parallel and Direct Cooling System for EV/FCEV Inverter

2018-04-03
2018-01-0454
This paper presents the direct liquid-cooled power module with the circular pin fin which is the inverter parallel cooling system for high output EV/FCEV. The direct cooling system of a conventional inverter is designed to supply coolant along the direction in which the heating element such as Si-chip is disposed and discharge coolant to the opposite side. In case of the inverter, the higher the output is, the larger temperature difference between inlet and outlet becomes due to the heat exchange of the heat generation element, so that temperature difference depends on the position of Si-chip. Since lifetime is judged on the basis of maximum temperature of Si-chip, the inverter itself must be replaced or discarded due to durability of the inverter even though Si-chip can drive further. The simple way to solve this problem is to increase cooling flow rate, but this leads to excessive increase in pressure loss due to circular pin fin.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

New 1.4ℓ SI Engine Development with the Aluminum Thermal Spray Coated Counter Spiny Thin-Wall Cast Iron Liner

2013-10-14
2013-01-2641
For the lightweight and compact cylinder block, new cast iron liner was developed, which has counter spiny form on the out side of the liner. Additionally, the outer surface was spray-coated with Aluminum in order to enhance the heat conductivity and to increase the grip force between the liner and the block. Without any redesign of cylinder block or crankshaft, the displacement of the engine could be increased from 1.25ℓ to 1.4ℓ by adapting this new liner only. This liner enabled to expand the engine displacement without both great dimension changes and production facility changes.
Technical Paper

Optimization of Cold Start Operating Conditions in a Stoichiometric GDI Engine with Wall-guided Piston using CFD Analysis

2013-10-14
2013-01-2650
The purpose of this paper is to investigate the mixture formation and optimize the operating conditions under cold start in a stoichiometric (λ=1) GDI engine with wall-guided piston using a 3D commercial code, STAR-CD [8]. For GDI engine under cold start, it can be difficult to carry out the optimization of operating conditions by engine test alone without the understanding of mixture formation inside the combustion chamber. In this study, three cold start conditions of the catalyst heating mode with split injection, the cranking under freezing temperature and acceleration before engine warm-up which causes oil dilution were calculated. In particular, injection strategy for each cold start condition were optimized and compared to the engine test data. The previously validated spray models [6] were applied to the analysis of the spray formation and mixing process inside the combustion chamber.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

Improvement of Durability in HSDI Diesel Cylinder Head

2005-04-11
2005-01-0655
In order to cope with new exhaust emission regulations, automotive industry is interested in research and development of HSDI (High Speed Direct Injection) diesel engines with common rail systems. Since HSDI diesel engine operates under highly loaded condition due to increased power output, cylinder head of HSDI diesel engine is susceptible to high cycle fatigue cracks. In this study, FE analysis was used to find the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. In order to improve the durability of HSDI diesel cylinder head, the modifications of cylinder head and head bolt pre-load were investigated. Experiments were performed to prove the existence of residual stress created during the heat treatment of cylinder head. The results of experiments showed that residual stress can affect the durability of HSDI diesel cylinder head.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

A Study on the Sound Transmission Loss of Split HVAC for Electric Vehicles

2022-06-15
2022-01-0981
Generally, the HVAC system of a vehicle is composed of Blower unit assembly and Heater unit assembly, and is located on the driver’s side of the dash panel. However, electric vehicles have far fewer parts than conventional internal combustion engine vehicles, so electric vehicles have large space in the engine room. This allows HVAC, which occupies large volume in the interior side, to be pushed in the direction of the engine room altogether, or by placing a part inside the engine room to make a slim cockpit and expand the interior space. However, this new structure, called the Split HVAC System, is mounted through the dash, allowing noise to pass through relatively easily. Since this adversely affects the NVH of an electric vehicle, it needs to be developed in terms of noise transmission. Therefore, in this paper, a study was conducted to predict the sound transmission loss of Split HVAC through an analytical method.
Technical Paper

Performance Analysis and Valve Event Optimization for SI Engines Using Fractal Combustion Model

2006-10-16
2006-01-3238
On the basis of the newly-developed fractal combustion model, the engine-thermodynamic-cycle simulations were conducted with the 1D engine-cycle-simulation program AVL-BOOST for a passenger-car SI engine with a fully-variable valve train. Results of the simulations showed a good agreement with measurements for both full and part load at various engine speeds. On the basis of the thermodynamic model for the engine, the valve event optimization was carried out for both full and part load with a partial factorial DoE plan consisting of various valve event durations and timings. For each of the selected cases, an independent optimization for the ignition timing was performed to determine the minimum BSFC under a constraint on specified knock criteria. Satisfactory results for the valve event optimization were achieved.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

2006-10-16
2006-01-3345
In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
Technical Paper

Geometric Effects on Stiffness in Big End Structure of Connecting Rod

2006-04-03
2006-01-0390
The main role of the connecting rod in the engine is to deliver the firing load to the crankshaft. In order to carry out successfully the function, it is need to grasp the rotating crankshaft and also to keep the good stiffness of the big-end of the connecting rod in acceptable ranges during engine operation. When the stiffness of the big-end is needed to be reinforced, in general, some geometric dimensions are simply increased without consideration of their complex effects on deformation. Sometimes the reinforced geometry causes negative effects on the stiffness. This paper focuses on the effect of geometric parameters on stiffness in the big-end structure of connection rod by using Taguchi method. It is found that the side flange is the most influencing parameters. The FEA simulated results are compared with experiments.
Technical Paper

Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger

2006-04-03
2006-01-0021
High specific power, additional hardware and mapping optimization was done to achieve reduction of fuel economy for current engine in this study. 2 stage turbocharger with serial configuration was best candidate not only for high specific power at high engine speed but also for increase of low end torque for current engine. This increase of low end torque is important for development of transient characteristic of vehicle. DoE and efficient EGR Cooler was applied for optimization of fuel economy. DoE was useful for optimization of fuel consumption affected by various fuel injection parameters. This DoE was also efficient for matching optimal fuel economy after change of engine hardware. Performance improvement of engine with 2 stage turbocharger VGT was evaluated and additional development of fuel economy was performed in this study.
X